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Abstract. The Gram-Charlier expansion of a band is an expansion in Hermite 
polynomials multiplied by exponentials, which converges in the mean to the correct 
band shape, and its coefficients are linear combinations of moments of the band. It 
is shown here how this expansion can be used to simulate the vibronic band shapes 
resulting from various types of Jahn-Teller coupling. This process has the advantage 
of being at its best when the coupling is strong and the standardmethods are difficult. 

1. Introduction 

This paper describes a novel way of calculating band shapes produced by strong cou- 
pling between electronic and vibrational degrees of freedom in a solid, and it aims to 
produce portraits of band shapes that are more valid than the result of Frank-Condon 
calculations in a regime where full quantum-mechanical calculations cannot be done. 
The interesting problems arise in particular when there is strong Jahn-Teller coupling 
between degenerate electron states and degenerate vibrational modes, the difficulty 
increasing with the degree of degeneracy on both sides. The background theory and 
a discussion of earlier work is to be found in a review article [l]. Briefly, the simple 
case of one electronic state interacting linearly with a single mode of vibration can 
be solved exactly at all coupling strengths to give a set of lines spaced at the phonon 
energy b, with intensities described by a Poisson distribution, which at strong cou- 
pling tends towards a normal (Gaussian) distribution. If our single electronic state is 
embedded in a solid, so that it can interact with many modes of vibration, then the 
band shape is just a convolution of the bands due to the different modes; the overall 
effect smooths out the line structure and the band shape tends to a smooth Gaussian 
at strong coupling. This Gaussian is the same as that predicted in the Frank-Condon 
approximation. In the more complicated Jahn-Teller case it is no longer possible to 
find an exact solution at any coupling strength, and instead a solution is usually found 
by a process of numerical diagonalization of the matrix of the Hamiltonian in a basis 
of the uncoupled electron states and phonon excitations. This process obviously gets 
less efficient as the coupling strength increases, but it has been used successfully at 
quite high coupling strengths in cases where the symmetry of the Hamiltonian can 
be used to cut down the size of the matrix. The results of such calculations can be 
compared with the predictions of the Rank-Condon approximation. It is found that 
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the convergence of the two is very much slower than in the simple case, and that fam- 
ilies of resonances appear along the way. Some of these shapes have been successfully 
simulated [2-71, but there are still enough difficulties to make it highly desirable to 
devise another method of studying them. 

In contrast to the previous method, which worked up from weak to strong coupling, 
we have here a method that works downwards and should be at its best when the 
coupling is very strong. It is based on the Gram-Charlier expansion [8], which is 
an expansion in Hermite polynomials multiplied by exponentials, and for which the 
coefficients are linear combinations of the moments of the band. These functions 
are well adapted to simulating localized functions such as band shapes or statistical 
distributions, as the exponential factor keeps them small outside a central region 
whose width can be chosen by the user. Used with care and in the right circumstances 
they can give a good representation of the band shape. From the point of view of 
the computation the use of moments is good, because they are simply produced by 
multiplication of the matrices, which are already at hand from previous band shape 
and other calculations. It is also favourable that the Hermite polynomials and their 
coefficients can be produced by recurrence relations that are computationally stable. 

The question of assessment of the validity of the computed band shapes is an 
important one. We have approached it firstly by constructing bands whose shapes are 
already known, and secondly by changing the parameters to see which features of a 
band are stable, and therefore likely to be real. The first important thing is that this 
simulation is at its best when intensity changes across the band do not happen too 
sharply, and in particular it must not be asked to show any detail on the scale of the 
phonon structure, which is always smoothed out as one would expect in the strong 
coupling regime. It also gets into trouble if sudden changes in the intensity produce 
the wiggles associated with the ‘Gibbs phenomenon’ in Fourier analysis. These wiggles 
can be distinguished from genuine peaks by their position and lack of stability, but 
making this distinction may be quite difficult. 

2. The Gram-Charlier expansion 

The Gram-Charlier expansion is an expansion in orthogonal functions that converges 
in the mean to  the function being represented, The formulae for the expansion can 
be written [8] 

where H,(z) is the nth Hermite polynomial in t, defined by the recurrence relation 

H,+l(4 = zH,(z) - n 4 - 1  

with Ho(z) = 1 and H,(z) = t. The coefficients c,, are given by 

1 +CO 
c, = 2 J_, H,(4f(Z) dz 

and as H,(z) is just a polynomial of order n, so c, is a linear combination 
moments of the distribution f(t), including all the moments up to the nth. A 

(2) 

(3) 

of the 
choice 
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must be made of the scale and position of the origin for f(z), and a sensible choice 
puts the origin at the centroid of f(z), so that c1 = 0, and sets the scale so that 
the second moment is 1, giving c2 = 0. In this way the starting point is a Gaussian 
with the same centre and the same width as f(z), which is clearly a useful start for 
an absorption band. In fact we make small changes in the scale and origin to suit 
different problems, but the approximation breaks down if we depart too far from this 
choice. The subsequent corrections in (1) are wavepacket-like functions, and figure 1 
shows one of these. 

4e+23 I I 1 I I 

3e+2 

2e+2 

le+2 

- le+2 

-2e+2 

-3e+2 

-4e+23 ’ 
Figure 1. H40(z)exp(-z2/2). 
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2.1. The G i b k  phenomenon 

This name is applied to the wiggles that appear in the sum of a Fourier series near a 
point where the function being synthesized has a sudden change of amplitude. These 
wiggles do not go away as the number of terms in the sum increases, they simply 
become taller and narrower in such a way that the square integral of the difference 
between the function and the sum goes properly to zero. Figure 2, which shows the 
result of performing a Gram-Charlier synthesis on a single delta function, illustrates 
this effect. The scale of the wiggles can be estimated by finding the wavelength in 
the ‘wavepacket’ functions, and for large n one can solve the appropriate differential 
equation in the WKB approximation, finding that the effective wavelength for H , ( t )  is 
2~/&. This wavelength is the predicted distance between the real peak and the first 
subsiduary peak in the worst case. Clearly this represents a limit on the resolution of 
our method, though its effect can be reduced by a suitable choice of scaling. 

3. Numerical methods 

Any attempt to calculate either H,,(z) or c,, by adding and subtracting successive 
terms to the polynomial, soon runs into rounding errors because the terms are so much 
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Figure 2. Simulation of a delta function (a )  using 200,400, 600 and 800 moments, 
(b )  400 and 800 moments with average oyes 400 terms. 

larger than the final sum. That is why the recurrence relation (1) is so important. Its 
use to find values of IT,,(+) ensures that we have a reliable set of functions up to  any 
value of n, and also that functions corresponding to only three successive values of n 
need to be kept at a time. 

It is equally important to be able to compute the c, using the recurrence relation, 
which is done in the following way. We start by setting up the matrix of the Jahn-Teller 
Hamiltonian in a basis of uncoupled electron and phonon states, with the uncoupled 
ground state in the ( 1 , l )  position, so that in the absence of any coupling the allowed 
optical transition is to the first basis element only. Under those circumstances the nth 
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moment of the absorption band is given by 

where A is the matrix of the Hamiltonian and 

10) = (i) ( 5 )  

(For a general discussion of the moments of a band see for example [9].) The matrix 
A is block tridiagonal, with no matrix elements connecting states that differ by more 
than 1 in their phonon occupation number. This means that if the bases for A stop 
at N phonons we can expect to be able to compute all moments up to / . L ~ ~ .  Hermite 
polynomials in A can be constructed by the recurrence relation 

with H,(A) = [I], the unit matrix, and H,(A)  = A. Using (4) and (3) we accordingly 
find that 

cn = (0 I H,(A)/n! I O ) .  (7) 

Although in principle this process requires matrix multiplication, in practice we can 
get away with only storing A and two basis vectors and using only a matrix x vector 
routine, as follows. We put H,(Aj/n! I 0) = I  n) and use (6) to give 

and since (0 I n) is just the first element of the vector In) the coefficient c, is im- 
mediately available. This numerical process works quite nicely, except for a difficulty 
with underflow. At large n, the c, as defined here become too small and the H,(z) 
too large, but this can be cured by introducing a factor in the recursive definitions 
such that c, --+ c, x (FACTOR)" and H ,  - H,/(FACTOR)", and choosing to have 
FACTOR - 10-20 usually works. 

An important choice that must be made is how to make the cut off in n. Since each 
extra term added in the series (1) reduces the integrated square difference between the 
function sought and the sum of the series, it appears that as many terms as possible 
should be included in full. However the behaviour of the Gibbs phenomenon makes 
the shape look better if we tail off the terms in some way. This is because of the 
behaviour that can be seen in figure 2-the wavelength of the wiggles varies with the 
value of n at cut off, so averaging over different values of n smooths out all but the dip 
nearest to the delta function, as can be seen in figure 2(b ) .  That last dip inevitably 
remains, and just has to be discounted when looking at the shapes. Another example 
of the effect of averaging can be seen in figures 5(a) and (b). In practice it is also a 
good idea to calculate the same band shape with various values of the scale and the 
choice of origin so as to sort out computational artifacts. The choice of scale can also 
have a considerable influence on the speed of convergence as well as on the speed with 
which instability is reached. 
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The matrices A are very sparse, so storage only needs to be found for the non- 
zero elements. Even so, the limit on some of the computations described here was 
storage. In some cases this can be got round by recalculating the necessary matrix 
elements for each call of the routine for A x In). This loses some time but the loss 
is not always very great. In most of the cases discussed in the following sections, the 
matrix A has already been found and used for other calculations, so that it is relatively 
straightforward to take them over for this one, but details will be given case by case. 

4. Jahn-Teller band shapes 

4.1. E 8 e 

As always we start with this system, which is the simplest one that is also interesting. 
It will serve to  show what good results can be obtained with this method. As is 
well known the Rank-Condon shape is a double hump, corresponding to  the two 
adiabatic sheets, and the band shape shows this double-humped structure at quite 
weak coupling, but as the coupling strength increases resonances appear on the high 
energy end and gradually close up to recreate the double hump. These were calculated 
originally by matrix diagonalization [lo], and figure 3 shows a recalculation of the 
band shape by the methods of this paper, using the same parameters. The number of 
moments used in each case was sufficient to converge well to  the band shape, except 
for a slight wiggle at the centre of eazh band. The agreement with [lo] is very close. 

In this case the matrix A is tridiagonal, with only one base per phonon occupation 
number, so there were no particular difficulties of size or time in the computation. 
The size of the matrix goes as N where pN is the highest moment used, so very high 
values of N can be used. 

4.2. r88(r2 e 6) 
This is another system that can be set up in a tridiagonal matrix [ll], and in the 
1977 paper some band shapes were shown, but these have not been repeated by later 
methods, so a sample is included here (figure 4). It should be noted that the dip in 
the middle of this band is deeper than in E 8 e, so the numerical process generates a 
wiggle there. The resonances on the high-energy side of the band are correctly placed. 

This is the case of a p state in equal coupling with modes of the two different symmetry 
types, with spin-orbit coupling to a spin of ;. The fact that the phonon states can 
be classified by their five-dimensional SO(5) symmetry helps to limit the size of the 
matrix, which goes as N2, so that well-resolved band shapes have been found by 
matrix diagonalization [4]. None the less, experiments suggest that we should be 
looking at stronger coupling than can be achieved by matrix diagonalization [5],  and 
we have accordingly produced some more band shapes with much stronger coupling 
by this new method (figure 5). The very strong coupling used here is shown by the 
large number of resonances showing up on the high-energy band. All three bands 
in figure 5 show the resonances on the peak at highest energy as well as the wiggles 
produced by the numerical process. Figures 5(a) and 5(b )  have both been put in to 
show how the wiggles can be calmed down by averaging, at the expense of some loss 
in resolution. The origin of the resonances is discussed in [SI. 
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Before leaving this system we include another pair of band shapes (figure 6) which 
compares the shape from (a) rS @ (r2 @ e) with that from (b) T @ (r2 @ e) when 
the coupling strength is the same, and the spin-orbit coupling is large enough to 
make a good gap between the j = and j = $ bands. These are plotted on the 
same horizontal scale, and with the origins matched. They are very similar, and the 
difference between them must be attributed to the coupling in (b) to the j = 4 states 
not so far away. This comparison throws some light on the attempt in [ll] to fit some 
experimental band shapes using I's 8 ( T ~  @ e) theory. The general fit was good, but 
the balance between the strengths of the two peaks was wrong. Figure 6 suggests that 
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d&ed in [ll].) 

@ (72 @ e) at 400 momenta with L = 10. (L is the coupling strength 

we might have done better with T @ (r2 @ E ) .  

This system, an electronic p state coupled to T2-type normal modes, is the one that 
has been most intractable to numerical methods although it was studied early on. The 
difficulty arises because, unlike all those listed so far, it has no accidental symmetry 
higher than the intrinsic octahedral symmetry of the complex. This means that group 
theory cannot be used to thin down the basis states of the matrix very much, and 
computations have to be stopped because of their excessive size. The large size of 
the matrices also makes difficulties for the method used here, but the figures (7) and 
(8) show a great improvement on those produced previously. In 1966, Toyozawa and 
Inoue [12], in an elegant piece of analysis, showed that the semi-classical band shape 
had three peaks, with the central one being a logarithmic singularity, and figure 7(a) 
shows the approach to this shape at strong coupling. For comparison 7 ( b )  shows the 
smoother three-peaked band shape for T @ (rz @ e )  at strong coupling. 

It is also of interest to look at the band shapes with spin-orbit coupling, of which 
samples are shown in figure 8. These shapes are worth looking at because they could be 
used to try to match the experimental bands arising from s -+ p transitions mentioned 
in 4.3. All fittings of band shapes done so far have been based on the equal coupling 
model of 4.3 simply because this was the only way of getting tractable computations, 
and other models should be tried. In fact the figures show that with spin-orbit coupling 
it would be hard to distinguish shapes calculated from the two models; it is only when 
the spin-orbit coupling gets very small that the characteristic logarithmic singularity 
appears. 

In this system two different methods were adopted to set up the matrices. In an 
effort to make the matrices as small as possible, the matrix derived using pseudoscalar 
operators [13] was used first, as it had been to do some preliminary calculations by 
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Kimber [7]. However it is complicated to set up, and would be even more complicated 
with the inclusion of spin-orbit coupling [14], so for most of this band-shape work the 
method of Sakamoto [15,16] was used. This latter method uses larger matrices, but 
the simplicity of setting them up gives it a great advantage. In each case the size of 
the matrix goes as N’, so this is the case for which the size and time limitation on the 
process is most severe, and is why we have not looked for high resolution in T 8 r2. 
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5. Conclusions 

We have here a method for simulating vibronic band shapes in strong coupling that 
can give results where other methods fail because of the size of the matrices. The 
appearance of the Gibbs phenomenon makes the method a little trickier to use when 
the band intensity has very sharp changes, but averaging can help, and comparing 
results obtained with different scalings helps to distinguish between real and induced 
structure. 
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In a real solid other interactions frequently smooth over any sharp structures, and 
in this case it is shapes like those of figure 8, produced with rather few moments, 
that are needed to compare with experiment rather than shapes like that of figure 4. 
If the sharp spectra corresponding to many phonon excitations are used it must be 
recognized that these phonon excitations are only providing a basis set in which to do 
the calculations, whereas the Jahn-Teller coupling is providing a force that is much 
stronger than the normal elastic restoring forces, so the use of high phonon excitations 
does not necessarily imply anharmonicity in the forces. 
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